
Pentesting Report: <Siemens LOGO! 12/24 RCE>

Daniel Benton (2007018) , Owain Edwards (1924129), Samuel Calvesbert (2474172),
Tobias Neugebauer (2583271), Alexandru-Catalin Radut (1932842)

August 30, 2023

Contents

1 Executive summary 3
1.1 Recommendations for a hardened device . 3

2 High-level description of the device 4

3 Investigating the device 6
3.1 Analysing the device setup . 6

3.1.1 Simulating a real-world environment 6
3.1.2 The network setup . 7
3.1.3 Creating a program . 7

3.2 Analysing the device in use . 8
3.2.1 Ports . 8
3.2.2 Directories . 9

3.3 Access restrictions . 10
3.4 Known CVEs and attacks . 10

3.4.1 Information gatherer . 10
3.5 Web interface . 10

3.5.1 Authentication . 12
3.5.2 SSL certificate . 15
3.5.3 Security header . 15

3.6 Encryption security . 16
3.6.1 Change variable section within web interface 17
3.6.2 Credit to Interface Security . 20
3.6.3 Further Investigation Plan . 21

3.7 LOGO! Soft Comfort . 21

4 Possible attacks against the device 23
4.1 Attacks by a local attacker with network access 23

4.1.1 Session token sniffing . 23
4.1.2 Insufficient Session Token Cleansing 24
4.1.3 The Issue of IP . 25
4.1.4 The Attack Itself . 25

4.2 Attacks by a remote attacker . 26

1

4.2.1 Denial-of-service attack . 26
4.2.2 Default credentials attack . 27
4.2.3 Local attacks ”remotely” . 27

5 Analysis of the weaknesses found 28
5.1 Session token sniffing . 28
5.2 Denial-of-service attack . 29
5.3 Default credentials attack . 29

6 Working as a team 30
6.1 Meeting to work on the device. 30
6.2 Teamwork breakdown . 30

6.2.1 Exceptions and Actual breakdown . 31

A Scans 34
A.1 Nmap scan with factory settings applied . 34
A.2 Nmap scan with activate HTTPS webinterface 35

List of abbreviations

PLC Programmable Logic Controller

IoT Internet of Things

CVSS Common Vulnerability Scoring System

DoS Denial-of-service

ISP Internet service provider

MitM Man-in-the-Middle

RPC remote procedure call

NIST National Institute of Standards and Technology

XSS cross-site scripting

2

1 Executive summary

In this report we discover several flaws in the security of the examined device. Most of them
are not critical and can be easily mitigated by configuring the device properly.
The most interesting discovery of our report is the missing integrity checks for user requests.
Therefore, we are able to demonstrate a session token sniffing attack. By obtaining a session
token any unauthorised user, of the same local network as the examined device, is able to
send requests to the device and take over control.

The report start off with a high-level description of the device in section 2. In the fol-
lowing the investigate the device during setup in subsection 3.1 and try to understand the
ongoing services in subsection 3.2. After exploring the different services and functionality of
the device we take a look at the possible attacks as a consequence in section 4. In section 5
we analyse the discovered attacks and put them into context of feasibility.

1.1 Recommendations for a hardened device

To summarise our findings, we give the following advice to a user who is not able to influence
the release of any fixes in the foreseeable future:

1. Pick unique randomly generated passwords with the max length

2. Disable TDE access

3. If not necessary, deactivate the web interface

4. Assuming the web-interface is used, deactivate HTTP and use HTTPS

5. Do not expose the Programmable Logic Controller (PLC) to the Internet, use VPNs to
connect to the PLC instead

6. Set LSC & LWE password

7. Activate the operator mode as soon as the PLC is not being configured anymore

3

2 High-level description of the device

The examined device is a PLC. A PLC is used in industry for controlling industrial machines.
The examined model consists of the following components, shown in Figure 1:

Figure 1: Overview of the Siemens LOGO! 12/24 RCE

1. Power supply input

2. Inputs (i.e. sensors)

3. Outputs (relays with a maxi-
mum output of 4A)

4. Module slot with cap

5. Control panel

6. LCD display

7. An Ethernet port (not visible)

Additionally, the LOGO! DM8 12/24R expansion module is used, adding four more inputs as
well as outputs as shown in Figure 2.

Figure 2: The LOGO! DM8 12/24R expansion
module

1. Power supply

2. Inputs

3. Outputs

4. Mechanical coding pins

5. RUN/STOP indicator

6. Slide

The basic idea of a PLC is to receive input data from sensors and decide on which output,
a logical one or zero, is sent out. This enables the user to orchestrate factory functionality

4

via written programs and control machines depending on the inputs received. The user can
program the PLC with the provided software ”LOGO! Soft Comfort”. The program can be
started and stopped via the control panel (see Figure 1)or with the programming software
and a computer in the same network.
A PLC is usually mounted on rails and located in a control room. It is possible to extend the
device with more expansion modules or connect different main modules and let them interact
with each other over Ethernet. This way, the user can potentially control complex machinery
with great amounts of inputs.

5

3 Investigating the device

3.1 Analysing the device setup

A PLC, in comparison to other Internet of Things (IoT) devices that are made for home
usage, is more difficult to set up and not plug-and-play. The LOGO! 12/24 RCE needs a 12
or 24 V DC power supply. Additionally, all input sensors and outputs/actuators incorporated
into the system also require a power supply. The outputs act as a relay and trigger the desired
response by controlling the ON/OFF signals perceived by the actuators.

3.1.1 Simulating a real-world environment

To simulate a real environment, we have used an Industrial Control Work-Cell by LJ Create.
The so called Industrial Control Trainer is visible in Figure 3. The Work-Cell provides a
motor driving a treadmill (1), two motion sensors with different altitudes (2 & 3), three air-
pressure controlled pistons (4), the mounted PLC (5), a green light (6), a red light (7), a
green button (8), a red button (9) and the air supply container (10).

Figure 3: The PLC in the Industrial Control Work-Cell

To use the PLC appropriate wiring is needed. Therefore, we attach the power supply, the

6

provided sensors and the outputs to the PLC as seen in Figure 4.

Figure 4: The wiring

3.1.2 The network setup

In the end the Ethernet cable is attached. The Ethernet cable connects the PLC to a switch.
We connect both the computer running the LOGO! Soft Comfort software and the computer
on which we conduct our measurements and tests, to the switch. We set an initial IP address
for the PLC in the menu of the device (these can be changed at a later point via the LOGO!
Soft Comfort software once networking is established). Notice that it is crucial to assign
a unique IP address and set the IP addresses of the network interfaces of the connected
computers accordingly. Duplicate IP addresses must be avoided. We finish the initial setup
by turning the Industrial Control Work-Cell on and pinging the PLC from both connected
computers. If an answer is received, networking has successfully been established and we can
continue on to the programming. PLC.

3.1.3 Creating a program

With the LOGO! Soft Comfort software it is possible to create programs using logic gates.
We decide to create a program doing the following:

7

1. Start the treadmill and light up the green light when the green button is pressed

2. Stop the treadmill, turn off the green light and turn the red light on when the red
button is pressed

3. If the lower sensor (marked ’3’ in Figure 3) is broken but the higher one is not, fire the
first piston after a certain delay

4. If both sensors are broken fire the second piston after a certain delay

As a result this program demonstrates the ability to sort the weights visible in Figure 3
by two heights in their respective trays. Figure 5 shows the created program. Additionally a
demo of the working program can be seen here. (0:00 to 0:18).

Figure 5: The created program in gate logic

In the program we take advantage of a so called SR latch, which is capable of storing
binary values. If a motion sensor is broken it changes the value of its corresponding SR latch.
The program waits for a specified amount of time to give the second latch long enough to
change its value, assuming the second sensor will be broken as well (meaning a weight with
the higher option of altitude is passing along the conveyor belt). If this happens, the second
piston is fired. Alternatively, if a weight with the lower option of altitude is travelling along
the belt, it will only trigger the lower altitude sensor, this meaning only the first piston is
activated. No matter which piston is fired, both SR latches are reset to their initial states.

3.2 Analysing the device in use

Since there are a lot of settings potentially affecting and/or depriving the security of the
examined device we start by enumerating characteristics of the device when reset to factory
settings. The PLC uses version 1.83.01 of the firmware. There is one newer version, which has
been released 08/02/2022. Since the download of the newer version 1.83.02 is restricted and
the changelog does not mention security relevant improvements, we stick to version 1.83.01
and can deem any discovered vulnerabilities as remaining prevalent in current versions of the
device.

3.2.1 Ports

To examine the open ports by default we reset the PLC to factory settings. After assigning
an IP address we conduct a nmap scan using the following parameters:

8

https://drive.google.com/file/d/1wBawsJLzBiEwyKhVQ-_ofGIR1Nffd0K6/view?usp=share_link

nmap -d -v -A -p- -oA nmapfactorysettings 169.254.161.213

With the options -d and -v we increase the verbose and debugging level to get as much
information as possible. -A activates OS detection, version detection, script scanning and
traceroute. With -p- we will probe every port of the examined device. The entire scan can
be viewed in A.1.
According to the scan there are three open ports, port 80, 135, and 8443. Port 80 is used
by the PLC to provide a readme file in the browser via HTTP. The same site is available on
port 8443 using HTTPS. Port 135 is used for communication to TDEs. TDEs are optional
text displays to display more information of the PLC. The used protocol is remote procedure
call (RPC) which is supported by our discovery of a RPC directory in 3.2.2. This port
is considered insecure, giving attackers the ability to modify configuration files. Siemens
recommends disabling the port but this is not done by default.1

Depending on the settings port 102 may be open as well. It is opened if a program needs
S7 access rights. S7 is a proprietary protocol by Siemens to communicate between different
PLCs. Siemens itself considers port 102 insecure and warns the user when attempting to open
that port. Nonetheless, for our example program we were forced to open port 102 to transfer
it onto the PLC.
If the PLC is set to slave mode the ports 102 and 502-510 are opened. They are needed
to listen to modbus communication. Modbus is a communication protocol implementing
master/slave communications.
If the web-interface (see 3.5) is activated and switched to HTTPS, port 8443 gets replaced by
port 443. Port 80 stays open all the time.

3.2.2 Directories

To start further investigation we conduct a directory search. We use gobuster with the
popular medium list included with Kali Linux.2. The results are as follows:

/ajax (Status: 200) [Size: 0]

/rpc (Status: 405) [Size: 0]

/AJAX (Status: 200) [Size: 0]

/RPC (Status: 405) [Size: 0]

/Ajax (Status: 200) [Size: 0]

/%3FRID%3D2671 (Status: 200) [Size: 8254]

/%3F%3F (Status: 200) [Size: 8254]

/%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F%3F (Status: 200) [Size: 8254]

/%3Fmethod%3Declou3 (Status: 200) [Size: 8254]

/%3Fmethod%3Dbanner (Status: 200) [Size: 8254]

/%3f (Status: 200) [Size: 8254]

Obviously, the PLC uses AJAX to dynamically update its web-interface with the current
status of the PLC. The directory RPC hints us about the used protocol. Since port 135 is
open and we find a directory called RPC we conclude the protocol used to communicate with
TDEs is RPC.

1https://cert-portal.siemens.com/productcert/pdf/ssa-817401.pdf
2https://github.com/daviddias/node-dirbuster/blob/master/lists/directory-list-2.3-medium.

txt

9

https://cert-portal.siemens.com/productcert/pdf/ssa-817401.pdf
https://github.com/daviddias/node-dirbuster/blob/master/lists/directory-list-2.3-medium.txt
https://github.com/daviddias/node-dirbuster/blob/master/lists/directory-list-2.3-medium.txt

3.3 Access restrictions

The PLC offers different services to avoid unauthorised access. To be precise the following
services with password restrictions are offered:

1. LSC & LWE

2. Webserver access

3. Webserver access guest

4. LOGO! APP user

5. TDE

The first password is the one needed to overwrite the software with LOGO! Soft Comfort or
the LOGO! Web Editor. It is not used by default.
The web-server passwords are restricting access to the web interface. They are turned on as
long as a web interface is activated. The guest is not allowed to modify any values of the
variables.
The ’LOGO! APP’ is the software for Mac-OS and access can be restricted with a password.
The TDE password protects the PLC from unrestricted operation. The PLC offers two
modes, the admin and the operator mode. In the admin mode, resets or network changes can
be applied. Additionally, the user is able to start or interrupt programs. The TDE password
applies no matter if the TDE access is activated or not. Therefore we conclude, that the TDE
access is for external TDEs and the password applies to external as well as to usage via the
internal menu.

3.4 Known CVEs and attacks

3.4.1 Information gatherer

The German company SySS GmbH developed a proof-of-concept script3 to demonstrate the
possibility of gathering every set password. The attack was disclosed in 2019 and Siemens
released a security advisory4. The provided script does not work anymore. Therefore, we
conclude the disclosed vulnerabilities have been fixed in the meantime.

3.5 Web interface

The PLC hosts different web pages depending on the applied settings. The user can decide
if they a) activate the web interface and b) if they activate HTTPS. Assuming they do not
activate the web interface a readme page is hosted, as seen in Figure 6. We can access this
readme page through port 80 and HTTP or port 8443 and HTTPS.

If the web interface is activated it allows a user to login either from the internal network
or remotely. They can change the value of variables and control the in- and output values of
the PLC as well as write to the virtual memory of the PLC.

The underlying web server is called LOS HTTP Server 1.0. Since we do not find valuable
information on Google or Shodan which give us a hint for the usage of this type of server,

3https://github.com/SySS-Research/slig
4https://cert-portal.siemens.com/productcert/pdf/ssa-542701.pdf

10

https://github.com/SySS-Research/slig
https://cert-portal.siemens.com/productcert/pdf/ssa-542701.pdf

Figure 6: The readme page

Figure 7: The activated login page

we assume it is a custom web server. But we find other PLCs of the same model on Shodan.
Since the query on Shodan searching for devices LOS HTTP Server 1.0 does give us a lot of
devices and devices which are clearly not PLCs we decide to refine our query. We use the
search query ssl.cert.issuer.cn:LOGO Product CA V1.0. This way we can look at all the
devices using the Siemens CA as issuer for their SSL certificate. An excerpt of the results is
visible in Figure 8.

Figure 8: All available devices on the Internet with the same issuer

We find a total of 27 devices. The 27 devices are not necessarily the same model as
our examined device. Looking at the given server information of the results we can see
LOS HTTP Server 1.0 appearing. We conclude there are at least 27 potentially vulnerable

11

PLCs on the Internet at the time being. Due to ethical reasons we do not further investigate
the discovered devices and blur their IP addresses.

3.5.1 Authentication

If we login into the web interface we have to authenticate ourselves with a password. There
is no minimum requirement for a password, for example the password ”1” would be perfectly
fine. Nonetheless, there is a maximum of ten characters for a password. According to the
Digital Identity Guidelines of the National Institute of Standards and Technology (NIST)
a user-generated password shall be at least 8 characters in length and an allowance of at
least 64 characters5. A maximum of 10 characters and no minimum length requirement is
not state-of-the-art. In addition to this, the character restriction implemented into the lo-
gin section of the web interface is done via JavaScript and hence is run on the client side,
meaning the response from the server for this page can be intercepted and altered to re-
move said character limit. This can prevent the concatenation in point 3 in the list below as
the truncated string would only contain the password if the user has changed the character
limit to anything above or equal to 32 and has completely filled the password field. While
we found no way of taking this discovery further, it is poor design to implement password
sanitising and handling on the client side and may present a deeper vulnerability in the future.

For authentication a challenge-response protocol is used which was reversed-engineered6. The
procedure is as follows, assuming the user’s password is ’12345’:

1.: Send a challenge to the server with the cookie Security-Hint=p. The body con-
tains UAMCHAL:3,4,W,X,Y,Z where W, X, Y, and Z are randomly generated according to
the reversed-engineered code. In contradiction to this assumption we always recorded the
challenge UAMCHAL:3,4,1,2,3,4 when testing, as seen in Figure 9.

2.: The server answers with a statusCode, a loginSecurityHint and a serverchallenge.
The status code 700 means no error has yet occurred such as in Figure 10.

3.: The client creates a pwToken with string concatenation as follows, this is then truncated
to a maximum of 32 characters:

pwToken = ’12345’ + ’+’ + serverChallenge

4.: The user creates a loginPWToken following this procedure:

loginPWToken = crc32(pwToken) XOR serverChallenge

5.: Finally they create a loginServercChallenge:

loginServerChallenge = W XOR X XOR Y XOR Z XOR serverchallenge

6.: They send a POST-Request with the following body to the server:

UAMLOGIN:Web User,loginPWToken,loginServerChallenge

Additionally, the header Security-Header: loginSecurityHint is used (Figure 11).
7.: Finally, one last response (as shown in Figure 12) is sent from the server containing:

StatusCode, ServerChallengeResponse

12

Figure 9: The security challenge

Figure 10: The server response to the challenge containing: StatusCode, LoginSecurityHint
and ServerChallenge

The password is never sent in plaintext. However, the security of obtaining the pwToken

relies on the security of CRC32, the cyclic redundancy check with 32-bit output. CRC32 is
not a hash algorithm and is not considered secure. It is quite easy to find collisions for the
CRC32 algorithm. Therefore, the CRC32 should not be considered secure, even though it
is not exploitable in context of the used challenge-response protocol. Even though we can
find different pwTokens with the same CRC32 ”hash” we are not able to obtain the password

5https://pages.nist.gov/800-63-3/sp800-63b.html
6https://github.com/jankeymeulen/siemens-logo-rest

13

https://pages.nist.gov/800-63-3/sp800-63b.html
https://github.com/jankeymeulen/siemens-logo-rest

Figure 11: The Client Request send corresponding to step 6 in authentication. Contains:
Web User, LoginPWToken and LoginServerChallenge

Figure 12: Final response from server before returning the logged in interface. Contains:
StatusCode and presumably a serverChallengeResponse

itself. This is due to the fact that the pwToken consists not solely of the password and a found
collision does not necessarily have the form needed to obtain the password.
After successful authentication the security hint is saved as a cookie and is also passed as
a header in all future requests to and from the server. The cookie as saved in a browser is
shown in Figure 13.

As visible the httponly and the secure cookie flags are not set. The httponly flag
prevents client-side scripts from accessing the data. This mitigates the most common cross-
site scripting (XSS) attacks. The secure flag prevents a cookie to be sent in plain-text as a

14

Figure 13: The security hint as cookie

HTTP request. Therefore, the cookie is just sent to a HTTPS site. We want to stress that
the shown screenshot is taken when the HTTPS web interface is active. This flag is not just
deactivated because HTTPS is deactivated.

3.5.2 SSL certificate

As visible in our port scan A.1 the SSL certificate is by default valid until 01/03/2021 and
therefore expired. Once the user activates the web interface the software prompts them to
update the certificate. This way the certificate of the PLC is replaced, as visible in A.2.
Anyhow, Siemens prompts the user to install and trust a root certificate, since they sign
the certificates of the PLCs by themselves. No matter the certificate it is not trusted by
default. Without manually trusting the root certificate the chain of trust is not given and as
a consequence the PLC certificate is not trusted as well.

3.5.3 Security header

We use the tool shcheck7 to scan the web-interface for unused or misconfigured security
headers. The results are as following:

==

> shcheck.py - santoru

--

Simple tool to check security headers on a webserver

==

[*] Analyzing headers of https://169.254.161.213/

[*] Effective URL: https://169.254.161.213/

[!] Missing security header: X-Frame-Options

[!] Missing security header: X-Content-Type-Options

[!] Missing security header: Strict-Transport-Security

[!] Missing security header: Content-Security-Policy

[!] Missing security header: Referrer-Policy

[!] Missing security header: Permissions-Policy

[!] Missing security header: Cross-Origin-Embedder-Policy

[!] Missing security header: Cross-Origin-Resource-Policy

[!] Missing security header: Cross-Origin-Opener-Policy

[!] Headers analyzed for https://169.254.161.213/

[+] There are 0 security headers

[-] There are not 9 security headers

7https://github.com/santoru/shcheck

15

https://github.com/santoru/shcheck

We look at the missing security headers more in-depth:
The X-Frame-Options header decides if a browser is allowed to render pages in <frame>,
<iframe>, <embed> or <object>. To avoid click-jacking this header shall be set to DENY or
SAMEORIGIN.
X-Content-Type-Options avoids MIME type sniffing when set to nosniff. MIME type sniff-
ing may lead to JavaScript code being executed.
Strict-Transport-Security tells the browser is only allowed to access the site with HTTPS.
Since HTTP should no longer be used, this header must be set.
Content-Security-Policy can mitigate XSS attacks. Should be set to default-src ’self’

if all content shall come from the site’s own origin.
The Referrer-Policy can limit the amount of information shared across different origins
in the referer header. A privacy-friendly option like strict-origin-when-cross-origin

should be preferred.
Permissions-Policy handles the granted permissions for APIs. For example the site’s per-
mission to use the camera or microphone can be restricted. Unnecessary permissions shall be
revoked with this header.
Cross-Origin-Embedder-Policy prevents loading cross-origin resources from the server that
do not permit it. The default value allows access to sensitive information, for instance cookies.
For maximum security this header should be set to require-corp. This way, all resources
loaded from other origins are required to opt into a new context group which isolates them
from the rest of the page.
Cross-Origin-Resource-Policy controls which origins are allowed to access a resource on
a web page. Changing it to same-origin only allows resources to be accessed by pages in
the same origin.
Cross-Origin-Opener-Policy handles the permissions of a page which is opened in a new
broswing context. It manages how the original site interacts with the new page. Setting it to
same-origin will allow the website to be only opened by other sites of the same origin.

A general recommendation for all the security headers is not possible. Some headers need
to be chosen individually in context of the specific security requirements of the environment
they are deployed in.

3.6 Encryption security

Assuming the user set the web interface to be accessible via HTTPS only, we look at the
security of the offered encryption algorithms. We use the script testssl.sh8. The entire
scan is included in the zip file.
The results show that the PLC uses TLS 1.2 and offers no other version. This is fine. For
TLS 1.2 it offers the ECDHE-ECDSA-AES128-GCM-SHA256 cipher suite. This cipher suite is
considered secure and is recommended9. Additionally, since the root certificate is not trusted
by default, a few warnings are enlisted regarding the broken chain of trust. Furthermore,
the missing Strict Transport Security header is detected, as already mentioned in 3.5.3.
No weakness in the encryption was found testing known vulnerabilities like Heartbleed or
POODLE. Worth mentioning is the fact that the PLC offers 384 bit ECDH for every simulated

8https://github.com/drwetter/testssl.sh
9https://ciphersuite.info/cs/TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256/

16

https://github.com/drwetter/testssl.sh
https://ciphersuite.info/cs/TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256/

browser except Android 7.0 (native). For this browser the 256 bit variant is offered. Since it
is still secure this is not a weakness or a flaw.

3.6.1 Change variable section within web interface

There is a section on the web interface which allows an authenticated user to send ’variable’
changes to the PLC. For example the user can decide whether or not the conveyor belt is
running by changing the Boolean variable to 0 or 1. This can similarly be done for any output
of the PLC, or within our system specifically, the items labelled 4, 6 and 7 and the conveyor
belt itself as shown in Figure 3. Figure 4 shows the wired outputs from the PLC. These
outputs labelled Q() contain the physical connection necessary to run our program. The
variables mentioned can be hardwired within the LOGO! Software on the directly connected
machine, in this situation this appears to take priority over any attempts to change variables
on the web interface. However, this technique offers little flexibility for change in the system,
or for co-operative work on a system. Hence, it is possible to set up the system in such
a way that the program essentially waits for input from network calls, primarily, via the
web interface. We believe this is system is likely to be the more implemented technique in
many real world systems as convenience and flexibility at the expense of security is often
favoured over an inconvenient system that requires a greater effort when things go wrong
or need changing. Also, in a realistic setting, it seems more likely that a manufacturer or
company operating machinery will not all be based within a local proximity, the enabling of
a web interface would be imperative in allowing them to continue operation of machinery in
various locations at once, cutting out substantial travelling time and costs. As a result, we
believed the web interfaces ability to change variables live within a running system to be a
very promising attack surface.

Figure 14 gives an example of how a variable can be changed in the web interface as
described.

Figure 14: The web interface and changing variables

Just to summarise and give a bit more context on the list of variables in Figure 14 because
at first glance these do not give much information (Information from LOGO!Soft Comfort
guide:

1. VM: Memory available by remote devices to read or write to.

17

https://static.rapidonline.com/pdf/1302217_an_en_01.pdf
https://static.rapidonline.com/pdf/1302217_an_en_01.pdf

2. I: Used to address the inputs of the PLC.

3. NetI: You can connect a network input to a block input. You can configure up to 64
network inputs. Network inputs can read values from the following types: VM, remote
device.

4. Q: Used to address the outputs of the PLC.

5. NetQ: When the LOGO! Base Module is in slave mode, you can configure a network
output on the master to control a digital output on the remote device. You can configure
up to 64 network outputs.

6. M: Flag blocks output their input signal.

7. AI: LOGO! PLC can process analog signals. You can use up to eight analog inputs.
In your block configuration, you can assign a new input terminal to an input block,
provided this terminal is not already used in the circuit program.

8. NetAI: You can connect a network analog input to a block input. You can configure up
to 32 network analog inputs. Network analog inputs can read values from the following
types: VM, remote device.

9. AQ: Eight analog outputs are available, namely AQ1, AQ2, ... AQ8. You can only
set an analog value at the analog output, that is, a function with an analog output or
analog flag AM.

10. NetAQ: When the LOGO! Base Module is in slave mode, you can configure a network
analog output on the master to control an analog output on the remote device. You
can configure up to 64 network outputs.

11. M: Flag blocks output their input signal.

12. AM: The analog flags can be used as markers for analog inputs or analog instruction
blocks. The analog flag merely accepts an analog value as input and outputs that value.

13. CURS KEY: You can program cursor keys for the circuit program in the same ways as
other inputs. Cursor keys can save switches and inputs, and allow operator control of
the circuit program.

14. FUNC KEY: TDE module has four function keys that you can use as digital inputs in
your circuit program. You program the function keys in the same way as other inputs in
your circuit program. Function keys can save switches and inputs, and allow operator
control of the circuit program.

15. SHIFT REG: The LOGO! devices provide eight shift register bits S1 to S8, which are
assigned the read-only attribute in the circuit program. The content of shift register
bits can only be modified by means of the shift register special function

A video of us exploiting this can be seen here. This video simply shows what happens when
you send the variable change to the PLC for the green light. Followed by and interception
and change to the instruction which keeps the light in its current state.

18

https://drive.google.com/file/d/1wDs-x34UrydPBnJbXTKk9r-AHPdEgsPw/view?usp=share_link

Figure 15: Gives an example of what an intercepted call to change variables looks like. On
the left is an intercepted call to change a Q output, on the right is a call to change a VM
memory value.

Within our system, we relied more on changing the direct output variables (Q) with the
web interface. However, in more sophisticated and realistic systems, any interaction with the
web interface is more likely to be done via writing to device memory via the VM variables.
The program running on the PLC will interact with its memory and certain inputs will rely
on memory stored on the device. Any change to the circuit will be implemented by changing
the value stored at this address in memory via the web interface. ?? shows two intercepted
calls in burp suite that are made when changing variables, first when changing directly the
output variable Q7, and setting it to value of 1, as shown by ’01’ at the end of the string.
The second is a call to change a memory address value VM 83 to contain a byte value of
’FF’. Under http communication it is clear how variables are being changed, the request is
simply being sent as plaintext to the AJAX server, the ’SETVARS’ is presumable filtered to
carry out the requested command internally on the server side. This seemed like a promising
attack surface. The first port of call is to establish what authentication is taking place on
the AJAX server if any. We first intercepted a message via Burp suite and attempted to re-
move the Security-Hint to see establish whether there is any authority check at all. However
this returns a 401 error with the message ’session expired’, inferring that the Security-Hint
passed to the server was either expired or not authorised. So, as a minimum, the sent request
needs to be coupled with a valid Security-Hint that has been generated by inputting the
correct password during the login process. We developed a shell script that sends curl re-
quest, seen in Figure 16, if inputted a valid security-hint, the script will successfully turn on
all of the outputs within our system. This proved that someone could directly interact with
the entire system, without needing to ever go through the log-in process, all they would need
is a valid security-hint, something we explored attacking and elaborated on in a future header.

A video of our attack can be seen here (0:18 to 0:26). Along with a video of the script
running at the same time,here.

To elaborate a little also on Figure 16, this script simply filters from Q1-10 and either
turns them on or off via boolean 00 or 01 calls. Our headers within the curl request itself
simply contain: the security-hint, the change variable command and its accompanying data
type, a self-signed certificate the curl required to permit it to make https communications,
with --insecure telling curl to use this self-signed certificate in any TLS communication
attempts. This curl command is received and successfully processed, even when the address
of the server is adjusted to incorporate https and the web server setting is changed to https

19

https://portswigger.net/burp
https://drive.google.com/file/d/1wBawsJLzBiEwyKhVQ-_ofGIR1Nffd0K6/view?usp=share_link
https://drive.google.com/file/d/15c1ENo6MsqHIcjcwf6uptraSTmce-z35/view?usp=share_link

Figure 16: Final shell script developed that successfully turns on all outputs in our system
without needing to interact with the web interface.

within the PLC LOGO! software itself. The fact that this curl request still works on https
means that appropriate certificate validation is not taking place on the AJAX server. This
is reinforced by the fact that https web server communications being enabled on the LOGO!
software itself is only met with a warning to update your own certificate (as the software
default certificates our outdated and expired), not an invalidation of permission to activate.
An implementation on the server side of appropriate certificate validation would significantly
help to improve security and authorisation of important requests to the system. Overall
this attack, if the correct conditions are met (these are more clearly defined here) can be
devastating to a system. If an attacker is able to obtain a Security-Hint and has the ability
to spoof to the original authorised user, the attacker has the potential to take down and ruin
the entire system, the only solution would be a whole system reset, this is an unacceptable
consequence and can be potentially extremely costly to a company implementing this PLC

3.6.2 Credit to Interface Security

Whilst we have been able to show that changing variables is vulnerable and that the security-
hint that is crucial to all variable changes with the PLC can be man-in-the-middled (the
details of an attack are elaborated on in this header). It is still worth noting what can reli-
ably be deemed secure and good practice by Siemens in this regard. First, the session sniffing
itself, whilst this possible via http, trying to carry this out on an external device whilst the
web server is running in https mode means that all traffic is encrypted and the security-hint
itself is not available to capture at any point.

In addition to this, the ability to alter variables in the web interface is not something that
is enabled by default on the PLC, in face the web interface needs to be manually enabled.
Whilst this interface is disabled, any attempt to communicate with AJAX web server cannot
be processed and hence there is no way to change any variable values or even view any
variables via this attack surface. It is also worth noting that the AJAX web server itself
is implemented strongly. Whilst the calls to the server are made via Javascript functions
that are stored on the client-side, there are no hard-coded vulnerabilities or exploitable bits

20

of code that could be found to use against the server. It seems strong in its filtering and
sanitising of requests, only responding to valid requests that cannot be hijacked in order to
carry out anything malicious. This can be further enforced by unsuccessful attempts to use
Telnet to connect to the PLC directly. Whilst successfully connecting to the open port 80
running http, the only requests successfully received this way by the server were those that
exactly copied those sent by the web interface itself, hence not supporting any new attack
surface. In fact, instead suggesting proper security and programming principles on the code
of the AJAX server being ran internally. No shell could be ran via Telnet, internal memory
accessed, files viewed. The PLC appeared secure to any attempts to access internal workings
other than the AJAX server that is hosted on the device itself.

3.6.3 Further Investigation Plan

Within our internal research, due to external restrictions out of our control, we had to treat
any attacks of the system internally over a LAN wired connection. Hence there being a higher
emphasis on the attacks related to the web interface. However, to take this further, it is pos-
sible via the PLC guides and handbooks to set up a WiFi connection to the device, or even
interact with a cloud to receive instructions. Both of these would be interesting areas to look
into and potentially also devastating attack surfaces. It is possible that the web interface
focused on within our network remains the same method of interaction even when WiFi is
enabled. In this situation our discovered attack can potentially become more disastrous and
the bounds of location no longer apply. In fact, the attack surface would only expand, as
victims now become susceptible to powerful phishing attacks that could prompt the user to
a fake login for the plc. If the attacker concocts some way to either gain the users password,
or an active Security-Hint, they will be able to launch this attack, no matter whether http or
https is enabled and appropriate certificates configured.

Enabling the cloud server could also be vulnerable, however, depending on the cloud
provider, this may be more difficult to test, as it is not within legal bounds to attempt to
attack an external provider. However, if we are able to host our own servers to interact with
the PLC’s, this could be a potential attack surface hosting more vulnerabilities than were
initially found. This would be an interesting area of research if this project were to be taken
further. A third interesting attack surface would be the communication possibility between
PLC’s themselves, as mentioned previous, it is possible to set master and slave modes to give
multiple PLC’s a hierarchy with one acting as the primary commander. Siemens themselves
within the LOGO! software application attempt to persuade you against activating the certain
ports required for this sort of communication due to it being ’vulnerable’. The reasons for
this being deemed so would be interesting to explore if we had access to additional PLC’s in
the future.

3.7 LOGO! Soft Comfort

This application is one of the main ways of interacting with the PLC and configuring it, there-
fore we investigated it for any possible vulnerabilities an attacker might exploit. In order to
analyse the software we use Ghidra and check how the executable is structured.

We first take a look at the imports of the executable and we can see three different DLL

21

https://en.wikipedia.org/wiki/Telnet

files being imported: gdi32.dll, kernel32.dll and user32.dll. While those three DLL files all
had CVEs associated with them as some point, the only recent one is CVE-2017-0038 which
has been patched already by Microsoft. As long as the Windows 10 installation is up-to-date
the security of the DLL files is not a concern. When looking at the functions of the applica-
tion the first thing we can notice is that the executable is stripped, meaning that all of the
unnecessary debug information that was part of the program has been removed. This not only
makes the executable itself smaller but it acts as a layer of security by obfuscating the code
from disassemblers, like Ghidra, making it more difficult to reverse engineer the application.

In addition, we check the whole codebase for any hard-coded strings that could leak con-
fidential information, like passwords or log messages. While there are a few integer values
that are hardcoded, they do not leak any critical information. When it comes to strings the
only ones we could find would refer to the name of the application window, or the name of
different images that would be imported into the GUI. This is true about log messages as
well, the only ones appearing in the executable being errors related to the initialisation of the
GUI itself and nothing about the actual protocols, or passwords that are in use.

Because of this our only other option was the analyse the whole binary file. Looking
through it gave us more insight on how the application works, like what it uses for the
GUI and how it sets up the environment for use, but the inner workings on how it connects
to the PLC are heavily obfuscated from the disassembler. While not being able to go in
detail through the whole codebase. From what we have analysed so far there are no obvious
vulnerabilities in the LOGO! Soft Comfort application.

22

4 Possible attacks against the device

4.1 Attacks by a local attacker with network access

The following attacks require the attacker to have access to the same network as the PLC.

4.1.1 Session token sniffing

We knew as previously stated that it is possible to launch an attack that manipulates the
variable values related to our PLC system from the web interface, this could be done by
intercepting any variable requests and manipulating them. We then found that this could be
taken a step further and instead of waiting for an authorised user of the system to attempt to
change the variables for us to intercept, we can instead intercept their Security-Hint (which
when the web server is communicating over http is sent every second within the header of
idle refresh requests to the AJAX server that the web page seems to make) and use this to
our own advantage, which is what was done to create the functioning curl script. Whilst this
worked on a local PC, we wanted to simulate this attack as it would happen. To do this, first
we launched an ARP poisoning attack between the user who had the intent of logging in, and
then PLC itself. This was done via a tool called ’Bettercap’. After poisoning the user and
the PLC the attacker can user Wireshark, or Bettercap itself, to intercept all traffic between
the two targets. Depending upon whether the web server is being run in HTTP mode (which
is done by default) or HTTPS mode, this traffic is either not encrypted or encrypted. In the
event it is not encrypted, the attacker is able to easily obtain the Security-Hint as it is
passed via the header of the response, as shown in Figure 17.

Figure 17: Wireshark interface sniffing one of the packets intercepted between the user and
the PLC AJAX web server, can see the crucial Security-Hint variable vulnerable.

This session token is powerful because it appears to be the one of the only verification
techniques on the server side of an authorised session. The other is IP address. From what

23

we can surmise it seems as though the AJAX server will store a list of dictionaries, one for
each IP using the web interface, within these dictionaries there are the various session tokens,
or Security-Hints that represent valid logged in sessions per user, where a user in this case
is identified by their IP address. These session tokens remain valid until either the user: logs
out or remains idle long for a certain prolonged period of time (if we had a valid token and
did not log out, but returned the next day this was no longer valid). Neither of these two
techniques of ensuring user verification are sufficient for a multitude of reasons listed in the
following headers.

4.1.2 Insufficient Session Token Cleansing

First focusing on the issues with the conditions that keep a Security-Hint token valid. As
mentioned, they lose authorisation following a logout call, or by showing a lack of activity for
a certain time threshold. As we have shown to obtain the security hint in the first place, it
is possible to do an ARP poisoning attack on the ARP cache of both the PLC and the user,
within this tool on Bettercap, it is also possible to re-route intercepted traffic via a proxy, this
means that an attacker would be able to intercept any logout request and route this to their
own proxy. From here, the attacker may choose to simply drop the packet request, although
this may seem suspicious since their web-page won’t exhibit any indication of a successful
logout. A smarter technique would be to drop the packet and return a modified response
that routes the user to a spoofed logout page, or back to the legitimate login page without
forwarding the logout request. The logout request is easily identifiable as show in Figure 18.
It simply contains a call to the ’function’ UAMLOGOUT which is filtered by the AJAX server
(this is recognisable in the client stored JavaScript on the site) and passes in a currently active
session token. Presumably the server receives this request and drops the passed in token from
the list of authorised ’Security-Hint’s.

Figure 18: Example logout request. Containing call to function ’UAMLOGOUT’ and an
example Security-Hint

The second method of cleansing the token by removing its authorisation after a period of
inactivity is very easily avoidable by setting up a script that will simply ping the web server
with the Security-Hint as a parameter and this will keep the session token alive in the AJAX
servers eyes. This can be combined with the previous attack of rerouting the logout request
and theoretically an attacker has the capability of only needed a single Security-Hint token
for all subsequent attacks as it will now remain on the server indefinitely in an ’authorised
state’. The original user will have no way of purposefully or accidentally removing this token

24

in the future as any new log-ins will generate a new session token that can coexist with the old
one that the attacker has hijacked. Not only is this insecure, it also opens up the potential
for overflow attacks. If the attacker intercepts all future logout requests and repeats the
process of redirecting the user to the log in page, and then subsequently starting a daemon
that frequently pings the web server using this new session token. It allows the attacker to
ensure that no valid Security-Hint session token is ever dropped, the ?? will only have a
limited amount of memory, especially the memory dedicated to this specific function. It may
be possible to either: overwrite other memory of the PLC if a sufficient amount of tokens are
maintained active or one time, reach an internal limit on the PLC of active session tokens so
that any further attempt to log in by the legitimate user will be met with an error, effectively
locking them out of web interface access.

4.1.3 The Issue of IP

This second layer of protection is a bit more of an advanced issue but using the similar
techniques to those already demonstrated it is again, easy to bypass. Attempting to steal a
Security-Hint is easy over a HTTP connection. The issue for an attacker when this hint
has been obtained is that, when attempting to execute a remote variable change command
either individually or via our shell script the server will simply respond with an ’ERROR 401
- Session Expired’. Contrary to the error statement, the session token remains active but
is just not usable from any external IPs. It seems the server will pattern match using the
IP address of the request sender and the saved IP address it has for the user who generated
the token in the first place via a successful login. If they match, execute the request, if not,
return a session expired 401 error. We found within our experiments when using a Linux
machine, it is possible to simply steal an IP address by manually changing to that of the
original authorised user whom the Security-Hint initially belongs to, it appears the AJAX
server does not check by MAC-address in addition to IP, because doing this simple change
allowed us to execute a stolen security hint as if it was our own. This may also cause actual
connectivity issues for the original user in an internal LAN network too, so could actually
be a form of DOS attack on its own as well as being a part of the larger variable changing
vulnerability.

Even if the server did check MAC-Address, this check would be influenced by the afore-
mentioned ARP poisoning and this attack would still be possible. Hence, in our local LAN
network, these measures are extremely inefficient in protecting the web server as it currently
stands.

4.1.4 The Attack Itself

To summarise this attack using all the previous information: An attacker with access to a
LAN network will be able to, from scratch, sniff the traffic between the user and the PLC if
the web server is activated. If traffic is not encrypted as the users configured the device with
defaults, the attacker will be able to see every time a user logs in, or is active on the web
server. Along with this, they will also be able to access their Security-Hint for every single
session that this user opens. Along with sniffing the network, they are able to proxy it to by
using intelligent tools such as Bettercap and Burp suite. This will permit the attacker the
ability to totally control and restrict what instructions an internal user is trying to send to
the PLC. The attacker can drop requests at will and manipulate responses at will, this allows

25

them to void any logout requests and keep a session token valid for as long as they desire
through simple scripts and daemons that run in the background. The attacker can not only
sniff the network, but ARP poison it in order to convince each device that it is the correct one
that it should be communicating with. With this, the attacker can execute variable changes
on the variables mentioned in section 3.6.1, this, as also shown, can change output signals,
virtual device memory, and overall cause catastrophic failure to the entire system that the
PLC is controlling.

4.2 Attacks by a remote attacker

4.2.1 Denial-of-service attack

Since the PLC provides a web-interface and an API we can make HTTP-requests. We try
two Denial-of-service (DoS)-tools, Slowloris10 and Goldeneye11. Goldeneye does not work as
expected and no attack is possible. Slowloris does slow down the loading time of the web-
interface for another user but the effect is too small. Therefore, we decide to write an own
bash script:

!/bin/bash

seq 1 200000 | xargs -n1 -P300

curl "https://169.254.161.213/logo_login.shtm?!App-Language=1" -k

-H "Connection: keep-alive"

The script spawns 300 processes and accesses the web-interface up to 200000 in parallel. The
-k option disables a SSL check, since the certificate of the PLC is not trusted and we want
to ignore all SSL errors. -H sets a HTTP header. We use the header keep-alive to tell the
web-server not to close a connection after the request has been made. Therefore, we establish
connections and keep them alive.
Starting the script takes down the web-interfaces after a few seconds. During script execution
the web-server resets most of the incoming requests, including the requests made by a real
browser as shown in Figure 19.

Figure 19: Unreachable webinterface during our DoS attack

Additionally, the AJAX API is not reliable anymore and we are not able to send com-
mands. For example the session sniffing described in 4.1.1 is not possible during the DoS

10https://github.com/gkbrk/slowloris
11https://www.kali.org/tools/goldeneye/

26

https://github.com/gkbrk/slowloris
https://www.kali.org/tools/goldeneye/

attack.
The DoS attack does not effect running programs. The PLC is able to execute the program
as usual. This does not surprise us since the attack only targets the web-server and the un-
derlying service of the web-server. The other services are not effected.
As we can not connect the PLC to the Internet, we conduct the DoS attack via the Intranet.
Therefore, we only assume this attack is executable by a remote attacker. This attack should
be possible as long as the port for the web-interface is accessible through the Internet and no
further measurements hinder the attack, for example firewalls or bandwidth of the Internet
service provider (ISP).

4.2.2 Default credentials attack

All used passwords, for the web-interface mentioned in 3.5 or the overwrite access, are by
default LOGO. The software does not prompt the user to change the password immediately.
Therefore, only activating the web-interfaces does start the web-interface with the default
password. The fact that there is not username to choose from decreases the difficulty for a
default credentials attack. An attacker could possibly try the default password on openly
accessible web-interfaces.
To mitigate this attack every password must be chosen randomly with the maximum allowed
characters. Additionally, every service provided by the PLC must use a unique password. We
suggest Siemens to force the user to change the password on setup and not allow them to use
default passwords.

4.2.3 Local attacks ”remotely”

Assuming the PLC is hardened and it is not possible to access it through the Internet it
is possible to deploy malware to obtain access to the PLC. If an attacker gains access to
any machine in the network of the PLC they can ARP-spoof the network to Man-in-the-
Middle (MitM) communication to the PLC. Since the session token is valid unless a user
logs out, the interception of the same in combination of IP spoofing makes it possible to send
requests to the PLC.

27

5 Analysis of the weaknesses found

For the evaluation of the severity of the found vulnerabilities, we are using the Common
Vulnerability Scoring System (CVSS) version 3.1.. We use the three main goals for security
to categorise the possible consequences of a successful attack. The three security goals are
Confidentiality, Integrity, and Availability (CIA goals).
An overview of the attacks is shown in Table 1.

Attack CVSS Details Consequences Mitigations for users

Session token sniffing 6.3
(medium)

4.1.1 Confidentiality,
Integrity

Add a Message Authen-
tication Code or a Digi-
tal Signature to ensure the
session tokens’ integrity

DoS 5.3
(medium)

4.2.1 Availability Do not make the PLC
available on the Internet.
Use firewalls and DoS pro-
tection

Default credentials 9.1 (criti-
cal)

4.2.2 Confidentiality,
Integrity

Change the default pass-
word during setup and pick
it randomly with the max
length of 10 chars.

Table 1: Overview of the found weaknesses

5.1 Session token sniffing

Requirements: The session token sniffing requires a lot of effort by the attacker. They need
to gain access to the local network the PLC is located in, the web interface must be activated,
and the attacker has to conduct an ARP poisoning attack to intercept the traffic of a user,
and the PLC. Or situated at the switch/router of the network to monitor non-broadcasted
communications. Therefore, they need to conduct the attack while an ongoing web session or
a new session is established by another user.
Consequences: Assuming the requirements are met, the attacker gains a lot of rights. They
can change variables influencing the behavior of the PLC. This could lead to machinery
malfunctioning as long as they are controlled by the PLC. If an attacker gains a valid session
token they are able to send arbitrary messages imitating the identity of the attacked user. As
a consequence, the integrity of every message of this user is not given anymore. Furthermore,
values of set variables of the PLC can be read. The confidentiality gets broken as well.
Mitigation: Activate HTTPS.
Fix: The fundamental flaw which enables this attack is the missing integrity check. To ensure
integrity a Message Authentication Code or a Digital Signature must be implemented for every
message sent by the authenticated user. Additionally, the certificate should be signed by a
trusted source by default without a manual installation. Remove HTTP and force the user
and the PLC to use HTTPS.

28

5.2 Denial-of-service attack

Requirements: Port 80, 443 or 8443 is reachable by the attacker. If the web interface is
available on the Internet the attacker does not need local network access, otherwise, access
to the local network is necessary.
Consequences: The consequences vary from the deployment scenario of the PLC. If only
the readme page is active, the availability of the readme page is impeded but the control
functionality of the PLC itself is not. If the web interface is active, the attacker can disturb
using the web interface or the AJAX API. This can have a stronger impact on the availability
assuming a company relies on controlling the PLC remotely.
Mitigation: Filter any requests on port 80, 443, and 8443 to the PLC with a firewall. Use
a VPN to connect to the Intranet and then to the PLC instead of making the PLC reachable
through the Internet.
Fix: Use DoS protection to secure the entire network.

5.3 Default credentials attack

Requirements: The attacker has access to any password-protected service of the PLC and
the service is active. The user has not yet changed the default password.
Consequences: The attacker can authenticate as a user and gains the same rights as a
legitimate one. The confidentiality and the integrity of this service is therefore endangered.
Mitigation: Pick randomly generated unique passwords for each service. Use the maximal
length of 10 chars. Change the passwords immediately after setting up the PLC.
Fix: Force the users to change passwords immediately. Remove default passwords. Introduce
a minimum length requirement of 10 chars. Remove the maximum limitation or increase it
to at least 64 chars.

29

6 Working as a team

From beginning to end, whether that be: researching, penetration testing or writing the
report; our team seemed to demonstrate a high level of competence when working together.
From the initial handout of the IoT device our team eagerly created communication channels.
We set up a quick means of communication via an instant messaging app to be able to
promptly schedule meetings and discuss anything time sensitive related to our project.

Additionally we set up a Discord server, allowing us to manage and collate our project
as a team. We had 4 main channels allowing us to write quick notes; Collate any helpful
research found that related to the PLC; Paste any information found relevant to the report
and a section for detailing what we had left in our list of things we wanted to achieve during
the time to produce the report. This can be seen in Figure 20.

Figure 20: The Basic channel structure used in our Discord server.

6.1 Meeting to work on the device.

Given the nature of our device, We were limited to working on campus and required to make
use of the security laboratory. This took away the convenience factor of being able to pass
around the device and work on it at home, however we believe it initially forced our hand to
schedule a team meet up which made future meetups far more frequent and productive. We
initially set meetups for the free time we all shared each week according to our timetables.
We then used an instant messaging app to schedule any additional meetups day to day that
we might have wanted, and to notify another team member if we decided on a whim to go
work on the project and ask if another team member would like to join.

This meant that we would often work on similar areas of the PLC at the same time
(researching, pen-testing). However when needed would would play to each others strengths
and split the tasks accordingly. A breakdown of the work can be seen in the next subsection.
t5

6.2 Teamwork breakdown

Based on the sections previous, We all agree that it’s difficult to quantify exact percentages of
which team members worked on what areas. We often found that we’d bounce ideas from one

30

https://discord.com/
https://discord.com/

and another and have multiple members working on the exact same thing for a particularly
difficult area of the project, this usually resulted in 1 person finding a flaw or strength of the
system although the other team member spent around the same amount of time on the same
area. Because of situations like this, none of us can comfortably say that they worked on a
particular area more than another team member (given some exceptions).

Around half way through the project we had another team member join causing some
disruption to the team-working balance we had flowing. We all understand and accept the
circumstances which resulted in this disruption and welcomed them with open arms. At this
point a lot of the hands on work was done, however we still managed to include them in areas
of the project we hadn’t quite covered as much or even considered.

6.2.1 Exceptions and Actual breakdown

Due to the for-mentioned inability to comfortably assign exact percentages, we will instead
present a table with more general quantifiers to express who worked on what. To make the
quantifiers more meaningful, Refer to 6.2.1 below.

. Report Research Device Setup + Pro-
gramming

Attack and re-
lated

Daniel Benton two two three two

Owain Edwards two two three two

Samuel Calvesbert two two two one

Tobias Neugebaue one two one two

Alexandru-Catalin
Radu

two three four four

Table 2: Very Rough Overview of the team working

Although These may not be a completely accurate way of describing our team work, It should
generally give an idea of how well we worked together, We would describe our team-working
as no less than great; even with the obstacles and disruptions faced along the way.

To further supplement our team-working, we later found trello to be a useful tool to help
manage workload when our ideas and research furthered the complexity and length of time
needed for the project. We started using this around half way through the time allotted.
Figure 21 shows a quick screen-grab of our working area towards the end of our project.

To add more supplimentary detail to the Attack and related section shown in HERE. This
includes any attacks one can think of which were attempted on the device. Some examples
would be; SQL injection attempts; DoS attacks and MITM. To make it clear; we all didn’t
work on each attack necessarily, but spread tasks amongst us fairly equally, unless an attack
benefited from having multiple team members work on them.

31

https://trello.com/

Figure 21: Trello Screen grab

32

https://trello.com/

Table Quantifier Descriptions For Table 2

one Large amount of time comparatively to other teammates

two Roughly an equal amount of time comparatively to other team members

three Other team members put a larger amount of time in. But some time was spent

four No time was was spent on this area.

33

A Scans

A.1 Nmap scan with factory settings applied

Nmap 7.93 scan initiated Fri Mar 17 07:51:29 2023 as: nmap -d -v -A -p-

-oA nmapfactorysettings 169.254.161.213

--------------- Timing report ---------------

hostgroups: min 1, max 100000

rtt-timeouts: init 1000, min 100, max 10000

max-scan-delay: TCP 1000, UDP 1000, SCTP 1000

parallelism: min 0, max 0

max-retries: 10, host-timeout: 0

min-rate: 0, max-rate: 0

doAnyOutstandingRetransmits took 56ms

Got nsock CONNECT response with status TIMEOUT - aborting this service

Got nsock CONNECT response with status TIMEOUT - aborting this service

Nmap scan report for 169.254.161.213

Host is up, received syn-ack (0.0025s latency).

Scanned at 2023-03-17 07:51:30 EDT for 255s

Not shown: 65532 filtered tcp ports (no-response)

PORT STATE SERVICE REASON VERSION

80/tcp open http? syn-ack

|_http-title: Site doesn’t have a title (text/html).

| http-methods:

|_ Supported Methods: GET POST

135/tcp open msrpc? syn-ack

8443/tcp open https-alt? syn-ack

| http-methods:

|_ Supported Methods: GET

| ssl-date:

|_ ERROR: Unable to obtain data from the target

| http-cisco-anyconnect:

|_ ERROR: Failed to connect to SSL VPN server

| ssl-cert: Subject: commonName=169.254.161.213/organizationName=SEWC/

countryName=CN

| Subject Alternative Name: IP Address:169.254.161.213

| Issuer: commonName=LOGO Product CA V1.0/organizationName=Siemens/

countryName=DE/organizationalUnitName=Copyright (C) Siemens AG 2020

All Rights Reserved

| Public Key type: ec

| Public Key bits: 256

| Signature Algorithm: sha256WithRSAEncryption

| Not valid before: 2020-03-01T00:00:00

| Not valid after: 2021-03-01T00:00:00

| MD5: d68275a296d983a55c491ec64e628b33

| SHA-1: 8f1a1f2dda295f8b29c7d68a729536c769f0be6e

34

| -----BEGIN CERTIFICATE-----

| MIICpzCCAY+gAwIBAgIHA++jAAAAHTANBgkqhkiG9w0BAQsFADB6MR0wGwYDVQQD

| DBRMT0dPIFByb2R1Y3QgQ0EgVjEuMDE6MDgGA1UECwwxQ29weXJpZ2h0IChDKSBT

| aWVtZW5zIEFHIDIwMjAgQWxsIFJpZ2h0cyBSZXNlcnZlZDEQMA4GA1UECgwHU2ll

| bWVuczELMAkGA1UEBhMCREUwHhcNMjAwMzAxMDAwMDAwWhcNMjEwMzAxMDAwMDAw

| WjA2MRgwFgYDVQQDDA8xNjkuMjU0LjE2MS4yMTMxDTALBgNVBAoMBFNFV0MxCzAJ

| BgNVBAYTAkNOMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE3aLIhIzVsIccAo5Y

| YvPmqwjti8BWROoJoAkZ92r+AGiIsz6HAXX4aUaisYNpJLIi4aMBHHJJxO8cynet

| GuDbu6NBMD8wDgYDVR0PAQH/BAQDAgOoMBEGCWCGSAGG+EIBAQQEAwIEUDAJBgNV

| HRMEAjAAMA8GA1UdEQQIMAaHBKn+odUwDQYJKoZIhvcNAQELBQADggEBABaCjwxN

| 4Jcw922sK13vp5pc6axPK3/+meHSU1PxVcTzvWM6z2DGatZ3tO3PvIl9QQZvQyCa

| QjoeziFUOpl4joPy6mZcld7TE8pHhzE9xMrqLpQinzMI29EetMHZSjpYvg7nZmIc

| 0nxsTGS7O2DwfEAQOGYHTYdDTn7O6jGfgE9jXdba6hgQik1Lt9hVyslO3pFaiXZ0

| 1ZVtJQP7GwHU8NCbiLYlAeyzoQ+DuyoE9wtJZX9C5b3bA9sxRRvDuVLsJrKeFxwZ

| PPiosV+8+q7ImSVDI7h/FlGU27lVIAunS6Svh0R6CpbK+06Q+MhpXyMYYCnVsHi5

| dVk4uAwA/o37U0Q=

|_-----END CERTIFICATE-----

Host script results:

| nbstat:

|_ ERROR: Name query failed: TIMEOUT

Read from /usr/bin/../share/nmap: nmap-service-probes nmap-services.

Service detection performed. Please report any incorrect results at

https://nmap.org/submit/ .

Nmap done at Fri Mar 17 07:55:45 2023 -- 1 IP address (1 host up)

scanned in 256.53 seconds

A.2 Nmap scan with activate HTTPS webinterface

Nmap 7.93 scan initiated Wed Mar 8 04:32:01 2023 as: nmap -d

-v -A -p- -oA nmaphttpsscan 169.254.161.213

--------------- Timing report ---------------

hostgroups: min 1, max 100000

rtt-timeouts: init 1000, min 100, max 10000

max-scan-delay: TCP 1000, UDP 1000, SCTP 1000

parallelism: min 0, max 0

max-retries: 10, host-timeout: 0

min-rate: 0, max-rate: 0

Packet capture filter (device eth0): dst host 192.168.44.128

and (icmp or icmp6 or ((tcp) and (src host 169.254.161.213)))

Packet capture filter (device eth0): dst host 192.168.44.128

and (icmp or icmp6 or ((tcp) and (src host 169.254.161.213)))

Packet capture filter (device eth0): dst host 192.168.44.128

and (icmp or (tcp and (src host 169.254.161.213)))

35

OS detection timingRatio() == (1678268080.408 - 1678268079.906)

* 1000 / 500 == 1.004

Nmap scan report for 169.254.161.213

Host is up, received reset ttl 128 (0.00070s latency).

Scanned at 2023-03-08 04:32:14 EST for 178s

Not shown: 65532 filtered tcp ports (no-response)

PORT STATE SERVICE REASON VERSION

80/tcp open http? syn-ack ttl 128

| http-methods:

|_ Supported Methods: POST

|_http-title: Did not follow redirect to

https://169.254.161.213/

102/tcp open iso-tsap? syn-ack ttl 128

443/tcp open https? syn-ack ttl 128

| ssl-date:

|_ ERROR: Unable to obtain data from the target

| http-cisco-anyconnect:

|_ ERROR: Failed to connect to SSL VPN server

| ssl-cert: Subject: commonName=169.254.161.213/

organizationName=SEWC/countryName=CN

| Subject Alternative Name: IP Address:169.254.161.213

| Issuer: commonName=LOGO Product CA V1.0/organizationName=

Siemens/countryName=DE/organizationalUnitName=Copyright

(C) Siemens AG 2020 All Rights Reserved

| Public Key type: ec

| Public Key bits: 256

| Signature Algorithm: sha256WithRSAEncryption

| Not valid before: 2023-03-01T00:00:00

| Not valid after: 2024-03-01T00:00:00

| MD5: 81db8e43e6664fce8aa1af12b5148a34

| SHA-1: 5755e205860bbcda4a4c96a857a2d7b57329fdc6

| -----BEGIN CERTIFICATE-----

| MIICpzCCAY+gAwIBAgIHA++jAAAAFDANBgkqhkiG9w0BAQsFADB6MR0wGwYDVQQD

| DBRMT0dPIFByb2R1Y3QgQ0EgVjEuMDE6MDgGA1UECwwxQ29weXJpZ2h0IChDKSBT

| aWVtZW5zIEFHIDIwMjAgQWxsIFJpZ2h0cyBSZXNlcnZlZDEQMA4GA1UECgwHU2ll

| bWVuczELMAkGA1UEBhMCREUwHhcNMjMwMzAxMDAwMDAwWhcNMjQwMzAxMDAwMDAw

| WjA2MRgwFgYDVQQDDA8xNjkuMjU0LjE2MS4yMTMxDTALBgNVBAoMBFNFV0MxCzAJ

| BgNVBAYTAkNOMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEmuFd70dTa9Y6Arg4

| UbQPA2fEQ7EQe0foUGtAfRjn2xD7qti4rhrNjG2fbL6iiXw+/0WV6Zl/DCCv6XT+

| SS5OuKNBMD8wDgYDVR0PAQH/BAQDAgOoMBEGCWCGSAGG+EIBAQQEAwIEUDAJBgNV

| HRMEAjAAMA8GA1UdEQQIMAaHBKn+odUwDQYJKoZIhvcNAQELBQADggEBAC4NdyYF

| 3vMC4KmMaWvRvk2TDfsfJttp3Qtf+PugJOlJ0Xgg9sMysVcIsiyO6OGqLrwidXgl

| 9rrsM8DGFUAqhKDRb9UkTbAbGf/TQ0IkAL6s3UE539aHMw4t/HBxzwd40GpY0iy3

| wDhKgB02l5n9B900Aq/psrI7WdMYBC4WlXmFnm6rSQ6ytWTLbEdA6TVQMY7vSWxQ

| pd5KoVoa5FcrshmasbDe2MArifdFpYI3bDcq+9obcF+Pud9yiGg6cp8pkAnzhmtC

| F0bSeThFWfp0XhfrEkh2FUCxxiFyo+pjW8s3TYnAk5koIpde1UhXswq0+/QDSBbX

| 1nqcYG/0veqYOLw=

36

|_-----END CERTIFICATE-----

| http-methods:

|_ Supported Methods: GET

Warning: OSScan results may be unreliable because we could

not find at least 1 open and 1 closed port

Device type: WAP|general purpose

Running: Actiontec embedded, Linux 2.4.X|3.X

OS CPE: cpe:/h:actiontec:mi424wr-gen3i cpe:/o:linux:linux_kernel cpe:/o:linux:linux_kernel:2.4.37 cpe:/o:linux:linux_kernel:3.2

OS details: Actiontec MI424WR-GEN3I WAP, DD-WRT v24-sp2

(Linux 2.4.37), Linux 3.2

TCP/IP fingerprint:

OS:SCAN(V=7.93%E=4%D=3/8%OT=80%CT=%CU=%PV=Y%DS=2%DC=T%G=N%TM=640856D0%P=x86

OS:_64-pc-linux-gnu)SEQ(SP=103%GCD=1%ISR=104%TI=I%II=I%SS=S%TS=U)OPS(O1=M5B

OS:4%O2=M5B4%O3=M5B4%O4=M5B4%O5=M5B4%O6=M5B4)WIN(W1=FAF0%W2=FAF0%W3=FAF0%W4

OS:=FAF0%W5=FAF0%W6=FAF0)ECN(R=Y%DF=N%TG=80%W=FAF0%O=M5B4%CC=N%Q=)T1(R=Y%DF

OS:=N%TG=80%S=O%A=S+%F=AS%RD=0%Q=)T2(R=N)T3(R=Y%DF=N%TG=80%W=FAF0%S=O%A=S+%

OS:F=AS%O=M5B4%RD=0%Q=)T4(R=Y%DF=N%TG=80%W=7FFF%S=A%A=Z%F=R%O=%RD=0%Q=)T6(R

OS:=Y%DF=N%TG=80%W=7FFF%S=A%A=Z%F=R%O=%RD=0%Q=)U1(R=N)IE(R=Y%DFI=N%TG=80%CD

OS:=S)

Network Distance: 2 hops

TCP Sequence Prediction: Difficulty=259 (Good luck!)

IP ID Sequence Generation: Incremental

TRACEROUTE (using port 80/tcp)

HOP RTT ADDRESS

1 0.37 ms 192.168.44.2

2 0.41 ms 169.254.161.213

Read from /usr/bin/../share/nmap: nmap-os-db nmap-service-probes nmap-services.

OS and Service detection performed. Please report any incorrect results

at https://nmap.org/submit/ .

Nmap done at Wed Mar 8 04:35:12 2023 -- 1 IP address (1 host up)

scanned in 191.56 seconds

37

	Executive summary
	Recommendations for a hardened device

	High-level description of the device
	Investigating the device
	Analysing the device setup
	Simulating a real-world environment
	The network setup
	Creating a program

	Analysing the device in use
	Ports
	Directories

	Access restrictions
	Known CVEs and attacks
	Information gatherer

	Web interface
	Authentication
	SSL certificate
	Security header

	Encryption security
	Change variable section within web interface
	Credit to Interface Security
	Further Investigation Plan

	LOGO! Soft Comfort

	Possible attacks against the device
	Attacks by a local attacker with network access
	Session token sniffing
	Insufficient Session Token Cleansing
	The Issue of IP
	The Attack Itself

	Attacks by a remote attacker
	Denial-of-service attack
	Default credentials attack
	Local attacks "remotely"

	Analysis of the weaknesses found
	Session token sniffing
	Denial-of-service attack
	Default credentials attack

	Working as a team
	Meeting to work on the device.
	Teamwork breakdown
	Exceptions and Actual breakdown

	Scans
	Nmap scan with factory settings applied
	Nmap scan with activate HTTPS webinterface

